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Minimum Description Length Block Finder, a Method to Identify
Haplotype Blocks and to Compare the Strength of Block Boundaries
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We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum
description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic
region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect
to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent
markers: this gives a tool for evaluating the significance of each block boundary. We have applied the method to
the published data of Daly and colleagues. The results expose some problems that exist in the current methods for
the evaluation of the significance of predicted block boundaries. Our method, MDL block finder, can be used to
compare block borders in different sample sets, and we demonstrate this by applying the MDL-based method to
define the block structure in chromosomes from population isolates.

Introduction

Haplotype blocks (Daly et al. 2001; Patil et al. 2001;
Gabriel et al. 2002; Zhang et al. 20025) define fasci-
nating microscale geography of the human genome. Al-
though several studies have confirmed that some type of
haplotype blocks define genome geography, the recent
data about haplotype blocks in the human genome have
left multiple uncertainties concerning block boundaries
and their variation. If the hypothesis of the ancient origin
of the haplotype blocks is true, this variation should be
seen across different human populations. In principle,
the block boundaries might vary in strength, the precise
location depending on the history of the chromosomes
studied. A block boundary observed in one population
might not be observed in another. On the basis of the
currently available data, many of the blocks and the
block boundaries seem to be shared to some extent
across populations, but there are also distinct differences
in the lengths of the blocks (Gabriel et al. 2002). Con-
sequently, the strength of the block boundaries should
also vary in a mixed population, and reliable determi-
nation of these boundaries is important when one con-
siders the putative use of the haplotype blocks in various
population genetic applications.

Although recent studies have elegantly described the
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concept of human haplotype blocks, the reliability of
block structure has not been addressed (Daly et al. 2001;
Patil et al. 2001; Gabriel et al. 2002). The published
methods have applied segmentation algorithms with rel-
atively ad hoc criteria for block quality. Also, the ex-
isting methods produce a segmentation without any
clear indication of how strong or weak the evidence for
predicted block boundaries is.

We describe here a new method for finding haplotype
blocks that is based on the use of the MDL principle.
We give a rigorous definition of the quality of the seg-
mentation of a genomic region into blocks and describe
a dynamic programming algorithm for finding the op-
timal segmentation with respect to this measure. We
also describe a method for finding the probability of a
block boundary for each pair of adjacent markers; this
provides a statistical tool for evaluating the significance
of each block boundary.

To test our method, the MDL block finder, we have
reanalyzed the published data of Daly et al. (2001). Our
results are in relatively good agreement with the pub-
lished conclusions, but they also reveal clear differences
in the predicted block boundaries and in their strengths.
We have also applied the method to analyze the hap-
lotype block boundaries in study samples of isolated
populations in Finland.

Material and Methods

Samples

The samples of the Finnish populations are described
in detail by Varilo et al. (2003). The families were ascer-
tained originally for a nationwide schizophrenia study.
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After obtaining informed consent, a tube of EDTA blood
was drawn from participants, and the DNA was extracted
by standard methods.

From the family collection, anonymized parent-off-
spring trios were randomly selected for this study. The
trios were selected to be representative for the settlement
history of Finland, inhabited by two periods of immi-
gration, 4,000 and 2,000 years ago, and consequently
resulting in early and late settlement regions as well as
small internal subisolates of the population (Peltonen et
al. 2000; Paunio et al. 2001).

MDL Principle and Coding of Haplotype Data

Let D be an # x p matrix of n observations over p
markers. We refer to the jth allele of observation i as
D,. For simplicity, we first assume that D, e {0,1}.

A marker interval [a,b] = {a,a + 1,...,b} is defined by
two marker indices: a,b € {1,...,p}. A “segmentation”
is defined as a set of nonoverlapping, nonempty marker
intervals. A segmentation is defined as “full” if the union
of the intervals is [1,p]. The data matrix limited to in-
terval [a,b] is denoted by D(a,b), and the values of the
ith observation are denoted by D(i,a,b).

The MDL principle (Rissanen 1978, 1987) considers
the description of the data through use of two parts: the
model, B, and the description of the data, D, given the
model. The description length for the data and the model
is L(B,D) = L(B) + L(D | B), where L(B) is the length
of the description of the model and L(D | B) is the length
of the description of the data, when the data are de-
scribed using the model B.

The MDL principle states that the desired descriptions
of the data are ones having the minimum length
L(B,D) of the total description. (For a good survey of
the [sometimes intricate] connections between MDL,
Bayesian statistics, and machine learning, see Li and Vi-
tanyi [1997].) The MDL principle has successfully been
used in various applications (Quinlan and Rivest 1989;
Kilpelainen et al. 1995; Domingos 1999; Hansen and
Yu 2001).

The haplotype data set D can be described by speci-
fying first how many blocks there are and where the
blocks start and end. For each block, we have to specify
how many typical haplotypes (“class centers”) there are
and what they are. For each observation and each block,
we indicate which of the typical haplotypes the obser-
vation comes from.

This representation balances the complexity of the
model, measured by L(B), and the accuracy of the model
in describing the data, measured by L(D | B).

More formally, a block model B consists of the fol-
lowing components:

1. A segmentation, S—that is, the start and end mark-

ers s, and e, for each block (b = 1,...,£). (Of

course, s; = 1 and ¢, = p. In some of our models,
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we allow parts of the data to be uncoded, so
Sy+1 = e, + 1 does not necessarily hold.) Implicitly,
the segmentation specifies the number of blocks,
L.
2. For each block 4, the class centers 8, = (6,,) (c =
.,k,), specifying the coordinates 6, for each
marker j = s,,...,e,. Implicitly, each 6, also spec-
ifies the number of centers k,.
The coordinates 0,,; are real numbers, encoding the prob-
ability of seeing 1 in marker j of an observation stem-
ming from class center ¢ of block 5. So, strictly speaking,
a class center is not a typical haplotype but a mean vector
of the haplotypes associated with the class.

Given block model B = [(s;,¢,),(0,.,)], the data can be
encoded as follows. For each observation i = 1,...,n
and for each block b = 1,... £, we first have to specify
which of the k, class centers the observation D(i,s,,e,)
belongs to; let this center be c. This takes log &, bits per
observation.

Then we have to describe D(i,s,,e,), through use of
the center coordinates 0,,;, forj = s,, ... ,e,. This is done
by assuming independence of marker values, given the
class center. Thus, the probability is

Hehl—em, G
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Using the relation of coding lengths and probabilities,
we get a code of length — log P[D(i,s,,e,)] for the data
D, given the segmentation model B.

Under the assumption that the segmentation in the
block model B is full, it can be coded using €logp bits
for encoding the block boundaries, €logn bits for the
number of centers in the block, and ak,(e, — s, + 1) bits
for coding the centers, where « is the number of bits
needed for the coding of a real number. Theoretical ar-
guments (Rissanen 1978, 1987; Hansen and Yu 2001)
indicate that the appropriate accuracy is obtained by
choosing o = (log#)/2. Thus, the length of the descrip-
tion of the block model is

€
L(B) = ¢logp + €logn + 2 k,ale, —s, + 1),
h=1

and the length of the description of the data is

n

L(D|B) = 2 E (log k, — log P[D(i,se,)]] -

Thus, the goal of the segmentation procedure is to find
a block model B such that the overall coding length
L(B,D) = L(B) + L(D | B) is minimized.

The description method is easily extended to handle
missing or unknown data values. If the values D, are
interpreted as a degree of certainty that the correct value
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is 1, the expression in equation (1) can be used directly.
For instance, one can assign the value 0.5 for each miss-
ing allele in the data. To obtain a proper probability
model, a normalizing factor should be included in equa-
tion (1). However, the factor behaves as an irrelevant
constant and therefore can be ignored.

Formal comparisons between existing methods and the
above definition of block quality are somewhat difficult,
since the methods are based on different approaches. For
example, in the study by Gabriel et al. (2002), the ap-
proach was to define as a block a region in which only
a small fraction of SNP pairs show evidence of historical
recombinations. This, in turn, is quantified by having the
upper confidence value of the D’ linkage disequilibrium
(LD) measure be <0.9. Our approach puts more emphasis
on the reconstruction of actual haplotypes for the blocks.

Dynamic Programming Algorithm

We use a dynamic programming algorithm to compute
an optimal block structure and then estimate the prob-
abilities of each block boundary. Similar methods have
recently been used by Zhang et al. (20024, 2002b).

The MDL cost function is, as defined above, a function
of the whole segmentation. However, it is straightforward
to see that it can be decomposed into a sum of the costs
of the blocks of the segmentation. Given a marker interval
[a,b], let k be the optimum number of centers and let 6,
be the corresponding center coordinates associated with
the jth allele of ith observation, such that the cost,

fla,b) = logp +logn + nlog/é + %/Q(b —a+1)logn

A

n b
+ >, >, [-D,log, — (1 — D) log (1 — 6,)] ,

i=1j=a

(2)

is minimized. Then, for the MDL optimal block model
B,..» we have

L(B,.»D) = min >, fla,b) ,

s lables

where S runs through all full segmentations on [1,p].
Thus, the minimum description length of haplotype data
can be defined as the sum of costs of coding of individual
blocks.

Denote by F(b) the cost of the optimal segmentation
of the haplotypes from marker 1 to marker b. We have
the typical dynamic programming equation

F(b) = min[F(a — 1) + fla,b)] ;

1=as<b

in addition, F(0) is defined to be 0. Namely, the coding
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from marker 1 to marker b is produced either by coding
all the markers in one block (with cost F[0] + £[1,b]),
or by coding for some a from marker 1 to marker
a — 1 optimally (cost F[a — 1]) and then coding from
marker a to marker b in one block (cost f[a,b]). Given
the costs f(a,b), the computation can be performed in
O (p?) time (that is, in an amount of time proportional
to p?).

The cost f(a,b) is computed by using k-means cluster-
ing on the data set D(a,b). The number of cluster centers
is varied from 1 to 10, and, for each number, we produce
five different clusterings. For each clustering, the coding
cost of D(a,b) is computed, and, as the cost f(a,b), we
select the smallest cost. (The problem of finding the best
cluster centers is NP-hard—that is, it is probably in-
tractable to solve exactly; thus, the approach does not
guarantee that the shortest description for the single
block from a to b is found.) The computation of f(a,b)
takes time O [n(b — a + 1)] for a fixed number of iter-
ations in the k-means algorithm. Thus, the total amount
of time needed for computing the costs f(a,b) is
O(np?).

In many cases, it is interesting to see how optimal
segmentations behave when some (inconsistent) markers
are allowed to be ignored in the data. We call such ig-
nored markers “gaps” between haplotype blocks. A nat-
ural extension of the problem of finding the optimum
segmentation is to find a segmentation that gives the
shortest description length and includes, at most, # gaps.
Denoting by F(b,u) the cost of optimal segmentation
from marker 1 to marker b using, at most, # gaps, we
have

F(b,u) = min lF(b — 1,u — 1), min [F(a — 1,u) + f(a,b)]} .

1=a=b

Namely, if a gap is used at the bth marker, then the
prefix segmentation of [1,b — 1] is allowed to contain,
at most, # — 1 gaps. Otherwise, a block [a,b] is intro-
duced, and the maximum allowed number of gaps from
marker 1 to marker @ — 1 is still #. The computation of
F(b,u) can be arranged to take O(np?) time.

Computing the Probability of a Block Boundary

The dynamic programming algorithm finds the best
segmentation. It is not obvious, however, how strongly
or weakly the data support the existence of a block
boundary between two markers. We next describe a way
of computing the probability that there is a block bound-
ary between markers j and j + 1. These probabilities can
be used as indicators of the solidity of the block
structure.

Denote by §; ., the set of all full segmentations having
a boundary between markers j and j + 1. Then we are
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interested in the probability of any segmentation from
S,j+1> given the data D:

PS,..|D) = > P(S|D).

Sesjj+1

Denoting by S[1,p] the set of all full segmentations on
[1,p], this can be written as

> P(S,D)

SE\SN+1
S P(S,D) (3)

S'es[1,p]

P(\S/‘,,‘H | D) =

The probabilities P(S,D) can be obtained in a natural
way from our description method. For any segmentation
S and data set D, we define

P(SaD) = Zﬁlzf’:lu,mssﬂa,h) ,

where f(a,b) are the minimum description lengths for the
corresponding blocks as described in equation (2) and
Z is a normalization constant that does not depend on
S and D. Note that the normalization constant cancels
out when substituted into equation (3).

Define g(a,b) = 27*? and, for any interval [},/’],

I1 qab),

Sed[j,j'] la,bleS

Q') =

where S[j,j'] denotes the set of all full segmentations on
marker interval [,;/']. Then, since S,,., is equal to the
Cartesian product §[1,/] x S[j + 1,p], we have

01,/)O( + 1,p)
O(1,p)

(For a similar development, see eq. [3.14] of Durbin et
al. [1998], as well as Liu and Lawrence [1999].) To
obtain numbers with moderate size, we report the log
odds of P(S;;,, | D). The log odds values are obtained
by considering all possible segmentations, and they
should not be considered as significance values.

To compute the quantities Q(i,f), we can again apply
dynamic programming. The equations are

O(L,h) = 2, O(l,a — 1)gla,b)

1=a<b

P(S/,/'-H | D) =

and

Olap) = 2, qabQb+1,p) .

asb=p

Here, of course, we define Q(1,0) = O(p + 1,p) = 1.
Thus, the probabilities P(S,;., | D) can be computed for
all j in time O(p?).
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Results

When MDL is applied to analyze haplotype data, we
need to specify a way of describing the data so that, in
the presence of distinct haplotype blocks, the description
is shorter than it is in the absence of distinct blocks. The
haplotype structure yielding the shortest description is
chosen as the best model.

This can be achieved as follows: We first describe the
block structure of the genomic region by indicating
where the block boundaries are and what representative
examples are for each class of every block—that is, the
class centers. We next describe, for each observed hap-
lotype and block, (i) to which class of the block the
haplotype, defined by the markers, belongs and (ii) how
(if in any way) the haplotype differs from the class cen-
ter. If the data can be described succinctly through use
of such a coding, then the data provide evidence of a
distinct haplotype structure; otherwise, the haplotype
over the given region is not accepted. The length
L(D|B) in bits of the description of data D, given block
boundaries B, can be considered to be a negative log-
arithm of the likelihood Pr (D|B) of the data, given the
block boundaries.

Given this measure of probability Pr(D|B) for each
block structure B, we can compute the posterior prob-
ability Pr(B|D) for each block structure B by using
Bayes’ rule. Further, the probability of a specific bound-
ary between, say, markers k and k + 1 in the data can
be computed as the sum of posterior probabilities
Pr (B|D) of any block structure having a boundary in
that gap.

A very important characteristic of this approach is
that it allows haplotype blocks to be discovered even
in the presence of genotyping errors, since an obser-
vation can be viewed to stem from a class center even
in the case of small variation; this just increases the
coding length (and thus decreases the probability) of the
block structure. Note that the description of the hap-
lotype data in itself is not very interesting; rather, the
length of the description indicates the strength of the
evidence of the data for the distinct haplotype structure.

We have tested our MDL block finder method on
simulated and real genotype data. The results obtained
from simulated data show that the method finds the
block structure that has been used to generate the data
and that the method is quite robust against noise (data
not shown). This resistance to the noise was also dem-
onstrated when the method was used to analyze real
data (see below).

For real data, figure 1 shows the results obtained
when the MDL method was applied to the data from
the study by Daly et al. (2001). In addition to the iden-
tified haplotype blocks, we have also indicated the op-
timal block structures for the case in which some mark-
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Figure 1

Haplotype block structure observed in the data of Daly et al. (2001). Marker number is given on the X-axis. a, The optimal

block structure produced by the MDL scoring function, compared against the block boundaries reported by Daly et al. (2001). The numbers
associated with the MDL blocks give the number of haplotype classes that suffice to cover at least 85% of the block and, in parentheses, the
total number of the classes. The numbers associated with the Daly et al. (2001) blocks give the number of haplotypes in the block that suffice
to cover at least 90% of the block. b, The log odds of the probability of block boundaries for each pair of adjacent markers. ¢, The optimal
segmentation when k markers are allowed to be left outside the blocks, for varying k.

ers are allowed to be left outside the blocks. Some of
the blocks (15-23) in the data of Daly et al. (2001)
seem to be very strong, as indicated by the deep wells
in the log probability plot. These most probably rep-
resent real haplotype block boundaries. On the other
hand, for example, the block structure around marker
number 40 seems to be far less well defined, as exem-
plified by the relatively flat probability curve in the re-
gion. This would challenge the existence of the hap-
lotype block boundary. Overall, the segmentations
reported by Daly et al. (2001) and those produced by
the MDL block finder were in good agreement; however,
an interesting difference can also be found at the block
around marker 20. Since Daly et al. (2001) count exact
matches, they report three distinctive common haplo-

types. The MDL block finder suggests two haplotype
classes, since it allows variability within a class. Table
1 shows an example of the class centers and the number
of haplotypes from each class identified by the MDL
block finder.

We added 5% or 10% of random noise to the SNP
marker data of Daly et al. (2001) and performed a ran-
dom permutation of the markers. Figure 2 shows the
results, with marker locations plotted using physical dis-
tances. We observed that the MDL block finder is very
tolerant of noise; the block structure obtained from the
noisy data is almost identical to the structure obtained
with the original data. As expected, the strength of the
block boundaries decreases when noise is added. How-
ever, for noise levels up to 5%, the structure remains
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Table 1

91

Haplotype Classes of Block 2 (Markers 15-24), Found by the MDL Method for the Data of Daly et al. (2001)

NoO. OoF HAPLOTYPES THAT DIFFER
FROM THE MOST COMMONLY
OCCURRING HAPLOTYPE AT

No. oF
ASSOCIATED 0 1 2 =3
CLASS HAPLOTYPES CENTER COORDINATES (MAJOR ALLELE OF THE CLASS) Markers Marker Markers Markers
1 190 .16 (0), .02 (0), .96 (1), .64 (1), .06 (0), .15 (0), .05 (0), .02 (0), .94 (1), .02 (0) 115 44 20 11
2 68 .91 (1), .88 (1), .18 (0), .20 (0), .82 (1), .20 (0), .82 (1), .92 (1), .15 (0), .91 (1) 34 18 4 12

the same. When the markers are randomly permuted,
the block structure disappears, which adds to the reli-
ability of the results.

We tested the MDL method with SNP haplotypes
obtained from samples of three Finnish subpopulations
(Peltonen et al. 2000; Paunio et al. 2001). Five haplo-
type blocks were identified in the three Finnish sub-
populations representing early settlement, late settle-
ment, and a regional subisolate of the late settlement
(fig. 3). The identified blocks varied in size from 12 kb
to 361 kb. As expected, the haplotype blocks do not
differ in different subpopulations of Finland, most prob-
ably reflecting the limited set of original founder chro-
mosomes shared by all analyzed populations and the
relatively short time since their first introduction to Fin-
land. The log odds curve for estimating the probability
of boundaries shows that, in general, the boundaries are
stronger for larger values of observations; this was also
obvious in our analyses of sampled data sets from Daly
et al. (2001). We tested the significance of block bound-
aries by using bootstrap methods to investigate whether
the optimal segmentation revealed a block boundary in
the resampled data sets. The results were similar to the
probabilities produced by the probabilistic approach
(results not shown).

Discussion

We have described here a method, MDL block finder,
for defining and finding haplotype blocks through use
of the MDL principle. The more distinct the haplotype
block structure is, the shorter is the description that can
be obtained for the data. The coding cost function fa-
cilitates the use of dynamic programming to solve the
problem, yielding an efficient algorithm for the problem.

We have also shown how the MDL principle can be
used to obtain probabilities for block boundaries for all
pairs of adjacent markers, providing a clear way to eval-
uate the significance of block boundaries. Experiments
on simulated and real data have shown that the method
produces useful results.

Haplotype blocks describe the history of the alleles
in the population. They do not define the relationship
between the populations but rather reflect the number

of meioses in the history of the populations. Totally
unrelated populations—one old with stable growth and
the other young with a high expansion rate—could
share identical haplotype blocks, at least if blocks are
monitored using relatively common, old SNPs. When
such common SNPs are used to construct haplotype
blocks, the framework block pattern seems to be ancient
and shared between different populations. Under such
a concept, the recombinations would be the major force
behind the haplotype blocks. In Saccharomyces cere-
visiae, the recombination hotspots occur at regular in-
tervals of ~50 kb; in humans, the detected haplotype
blocks might indicate some level of regularity of recom-
bination events, reflected by block boundaries. How-
ever, the relative contribution of random recombination
and recombination hotspots for block borders is yet
unknown (Stumpf 2002; Wang et al. 2002; Cardon and
Abecasis 2003).

Further, chance and selective sweeps can also affect the
haplotype structure in different populations (Zhang et al.
2002a). If we accept the concept of the binary recom-
bination behavior of human chromosomes, the markers
between the recombinational hotspots or within the hap-
lotype blocks are in LD, whereas the markers across the
blocks and flanking recombinational hotspots are not.
Thus, we could use the block information for cost-ben-
eficial design of initial mapping efforts of human traits
and diseases. Since blocks are different in populations
with different genetic histories, the determination of pop-
ulation-specific block structure would be beneficial, and
the reasonable estimates of the significance of block bor-
ders should precede genotyping efforts utilizing the hap-
lotype-block concept in marker selection. The logistics
behind the utilization of block structure in disease gene
mapping would be to determine the variance of LD
blocks in disease alleles versus nondisease alleles and, on
the basis of the deviation in the variance, to target the
more detailed structural analyses to the particular region
defined by LD block.

Here, MDL block finder would help in determining
the statistical power of the study sample to identify the
block borders. Moreover, population-specific analyses
are most likely needed, for example, to find “haplotype-
tagging SNPs” (Johnson et al. 2001). Discrete measures
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Haplotype block structure observed in the data of Daly et al. (2001) with added noise. The physical location of the marker is

given on the X-axis. a, The block boundaries reported by Daly et al. (2001) and the optimal block structures produced by the MDL scoring
function when 0%, 5%, and 10% of random noise was added to the data and when the order of markers was randomly permuted. b, The log
odds of the probability of block boundaries for each pair of adjacent markers, after adding noise and permuting the order.

of block borders are somewhat risky, especially in pop-
ulation-specific analyses, since evidence for a nonexist-
ing border might come from a small sample of infor-
mative chromosomes, the size of which also probably
varies along the genome in a population-specific way,
because of varying allele frequencies. The MDL block
method should provide some statistical measures in the
block recognition process. It seems likely that the map
of equally spaced SNPs with solid statistical evidence
of LD across the region would be the most efficient way
to proceed in disease locus mapping. This approach
should also eliminate some of the reports of few SNPs,
chosen in an ad hoc manner, showing LD in disease
alleles of common traits without a solid statistical
framework.

Most of the current discussion concerning haplotype
blocks has concentrated on their application in reducing
genotyping costs. However, it is tempting to suggest the
utilization of haplotype blocks in the final selection of
the SNPs for functional studies. Restricting the SNPs to
be analyzed to belong in a haplotype block associated
with a phenotype would greatly enhance (and reduce
cost) of these difficult analyses. Of course, this would
require not only the background knowledge of block
structure but also some novel biostatistical methods to
distinguish the associated blocks from their surround-
ings. In any case, to be able to make this kind of im-

portant decision, it is essential for the investigator to
evaluate the block structure within the population under
study—and, again, to evaluate whether it is reasonable
to trust the evidence of a block border in the samples
studied.

Most studies concerning LD patterns and haplotype
block structure have included only SNPs with a rela-
tively high frequencies—that is, >10%-15%. It will be
interesting to see how the block structure determined
by MDL behaves when genetic markers with low allelic
frequencies are built into the models in reasonably sized
populations. If a hierarchic structure of haplotype
blocks is seen, so that LD patterns seem to vary after
inclusion of these low-frequency alleles, the need for
solid statistical judgment of block borders becomes even
more evident.

Intuitively, a haplotype block can be considered to
represent a sequence of ordered markers such that, for
those markers, most of the haplotypes in the population
cluster into a small number of classes. Each class con-
sists of identical or almost identical haplotypes. This
notion can be formalized by considering the problem
of describing the haplotypes in a succinct way. This
approach is an instance of the MDL principle (Rissanen
1978, 1987), widely used in statistics, machine learning,
and data mining (see, e.g., Li and Vitanyi 1997; Hansen
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Figure 3 Haplotype block structure in the data from three subpopulations in Finland. Sample sizes are as follows: late settlement, n =

108; early settlement, # = 32; and subisolate of late settlement, # = 108. The physical location of the markers are given on the X-axis. a, The
optimal block structure produced by the MDL scoring function in the three subpopulations. The numbers refer to the number of haplotype
classes covering at least 85% of haplotypes and, in parenthesis, the full block. b, The log odds of the probability of block boundaries for each
pair of adjacent markers. ¢, The subisolate; the optimal segmentation when k markers are allowed to be left outside the blocks, for varying k.

and Yu 2001). Similar ideas have also been applied to
partitioning homogeneous DNA domains (Li 2001).

The MDL block finder described here provides a
sound and simple way of assigning significance of hap-
lotype block boundaries and has many obvious appli-
cations. The reports of identified haplotype blocks have
used samples that vary greatly in size (e.g., 42, 258, or
550 chromosomes; see Patil et al. [2001], Daly et al.
[2001], and Gabriel et al. [2002], respectively), and the
significance of haplotype borders still has not been prop-
erly addressed. Further, the methods used to search for
haplotype blocks described so far in the literature can
be very vulnerable to genotyping errors, whereas the
MDL block finder method seems to be quite resistant
to this type of noise.

Our MDL method offers an alternative for estimating
haplotype blocks and for comparing the blocks and
their boundaries to each other. In addition to an obvious
application in the human haplotype project (Couzin
2002), the method could also be applied in population
genetics—for example, in estimating the genetic admix-
ture of a population, or, because of its resistance to
noise, in analyzing incomplete data sets, which inevi-
tably occur in any large-scale genotyping efforts.

Computationally, the MDL block finder can be ex-
tended into many directions. The clustering approach
and k-means algorithm could be replaced by closely
related but directly probabilistic mixture models and by
the usual expectation-maximization algorithm, respec-
tively. The modifications of the method would facilitate
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analyses of microsatellite markers. A challenging open
problem is to develop the method further so that it could
discover haplotype block structure through use of ge-
notypic data without phase information.

The software for the MDL block finder is available
from the authors.
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